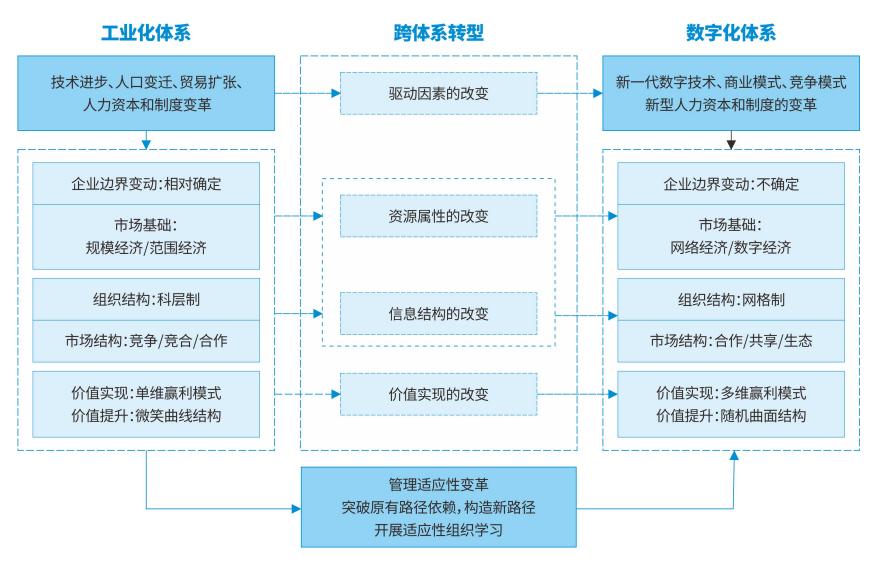
猪人工授精与母猪批次化管理

华中农业大学 秀博股份 李家连 博士

TABLE OF CONTENTS 目录


一、人工授精加快遗传进展

时代 良种组织 价值

1、时代:数字化转型与管理适应性变革

企业数字化转型与管理适应性变革模型

工业化体系与数字化体系内在机制的比较						
比较维度	工业化体系	数字化体系				
资源属性	资源属性主要表现为稀缺、独占和静态; 企业边界的变动方向相对稳定; 以规模经济和范围经济为市场基础	资源属性主要表现为相对丰裕、共享和动态; 企业边界的变动方向具有不确定性; 以网络经济和数字经济为市场基础				
信息结构	信息结构主要表现为不及时、不连续、不 细化和不完整; 组织结构主要表现为科层制结构; 市场结构主要表现为竞争、竞合和合作	信息结构主要表现为及时、连续、细化和完整; 组织结构主要表现为网络制结构; 市场结构主要表现为合作、共享和生态				
价值实现	价值实现主要受规模报酬递减的约束; 价值实现方式主要为单维赢利模式; 价值提升主要沿价值链攀升,形成微笑曲 线式的价值提升方式	价值实现主要体现出规模报酬递增的特征; 价值实现方式主要为多维赢利模式; 价值提升取决于价值网络,形成随机曲面的的价值提升方式				

2、良种: 提升生猪产业核心竞争力的关键

- ●打造协同高效的育种体系: 国家生猪核心育种场+国家核心种公猪站+ 国家种业阵型企业(国家生猪战略种源基地)
- ●构建全产业链育种数据体系:获取全产业链育种大数据,支撑高效精准育种
- ●**完善种猪生物安全体系**:构建和完善种猪生物安全防控体系,大幅提高种猪健康水平
- ●提升品种创新和资源利用水平:提升品种创新能力和企业核心竞争力
- ●提高生猪育种服务效能:建立多元化高效育种技术服务体系,支持育种企业和商品猪生产企业提升品种改良可持续发展能力

3、组织:集中优质资源选育,成果普惠分享

●**育种组织选择**:集中社会优质资源聚焦选育,育种成果普惠分享

✓ 发达国家育种模式: 国外专业育种公司育种、联合育种

✓我国养猪育种模式:养猪集团专业育种、专业种猪公司育种、

母猪场自循环选育

4、价值:大型高标准社会化供精加快遗传进展

北方沈阳公猪站

中部禹州公猪站

南方贵港公猪站

●河南秀博公猪站

二、批次生产提高生产效率

优势 劣势 设计 关键点

1、批次化生产优势

●人员:集中工作,提升工作效率和人效;更有利于安排员工休假;

●猪群:同批次猪群统一管理,管理流程清晰;

●方法:做好环境管理和饲养管理,提升猪场生产成绩;

●环境: 批次猪群全进全出, 提升猪场生物安全管控强度;

●设备:产床利用率最大化,可达100%;

●防病:对外最大优势减少拉猪车频率:

●市场价值:大批量断奶和出栏销售。

2、批次化生产不足

●猪场工作大量集中在一个阶段,对员工素质和能力要求较高,劳动强度大;

- ●栏舍利用率不能最大化,如定位栏;
- •对内集中人员工作时,有互相交叉;
- ●后备母猪及时补充。

3、批次化生产工艺参数及设计

●批次生产的计算:

- ✓母猪两次分娩间隔天数(147天):
- ✓哺乳期(24-26天)+断配间隔(5-7天)+妊娠期(丹系: 116 天: 美系114天)

3000头母猪批次计算					
批次间隔天数	批次数	每批次猪群数量			
7(周生产制)	147/7=21	3000/21=143			
14(双周生产制)	147/14=10	3000/10=300			
21(三周生产制)	147/21=7	3000/7=429			
35(五周生产制)	147/35=4	3000/4=750			

●根据产房栏位数计算

五周生产模式					
产房栏位数	300				
批次分娩母猪数	300.00				
批次配种总数	333.33				
批次配种断奶母猪数	270.00				
批次配种补充后备母猪数	63.33				
定位栏数量	1333.33				
空怀栏数量	66.67				
隔离栏数量	引种频率决定				
规模(生产母猪数)	1333.33				
批次补充后备母猪数	68.84				
后备母猪年配种数	633.33				
生产母猪年更新率	47.50%				

项目	公司标准
后备母猪发情配种率	92%
受孕率	92%
分娩率	90%
断奶母猪7天内发情配种率	90%
窝均活仔数	13.5
窝均健仔数	13
平均初生重	1.3
哺乳仔猪断奶成活率	96%
空怀母猪比例	5%

●根据猪场规模和生产节律计算

五周生产模式					
母猪规模(生产母猪数)	3000				
批次配种头数	750.00				
批次分娩窝数	675.00				
批次配种断奶母猪数	607.50				
批次配种补充后备母猪数	142.50				
后备母猪年配种数	1425.00				
生产母猪年更新率%	47.50%				
后备母猪批次补充数	154.89				
定位栏数量	3000				
空怀栏数量	150				
隔离栏数量	引种频率决定				

项目	公司标准
后备母猪发情配种率	92%
受孕率	92%
分娩率	90%
断奶母猪7天内发情配种率	90%
窝均活仔数	13.5
窝均健仔数	13
平均初生重	1.3
哺乳仔猪断奶成活率	96%
空怀母猪比例	5%

4、批次化生产关键点

关键点、难点

及时补充优质健 康的后备母猪

分娩率、断配率要更高 (90%以上)

员工能力要求高

资源配置要求高

- 1、引种、隔离、驯化;
- 2、诱情管理;
- 3、营养管理;
- 4、背膘管理:日龄、

体重;

5、健康度高。

1、营养管理(妊娠前期、中期、后期,哺乳期); 2、健康管理(免疫、保健、驱虫、生物安全、子宫炎等); 3、环境管理(温度、湿度、光照、空气质量等); 4、问题母猪管理处理与淘汰(超期、返情、空怀、流产、炎症等)。

- 1、员工技能:配怀分娩一体、饲养技术一体对员工能力要求更高;
- 2、执行力:是否到位;
- 3、训战:员工的培训
- 和实践管理;
- 4、团队派工:团队的
- 分工和合作。

1、定位栏配置:定位栏数量高,与母猪规模一致; 2、育肥场配置:随时保证4-5个批次断奶猪的栏位;

3、规模要求:五周批适 合3000头以下规模,高于 3000头就需要分场或分线。

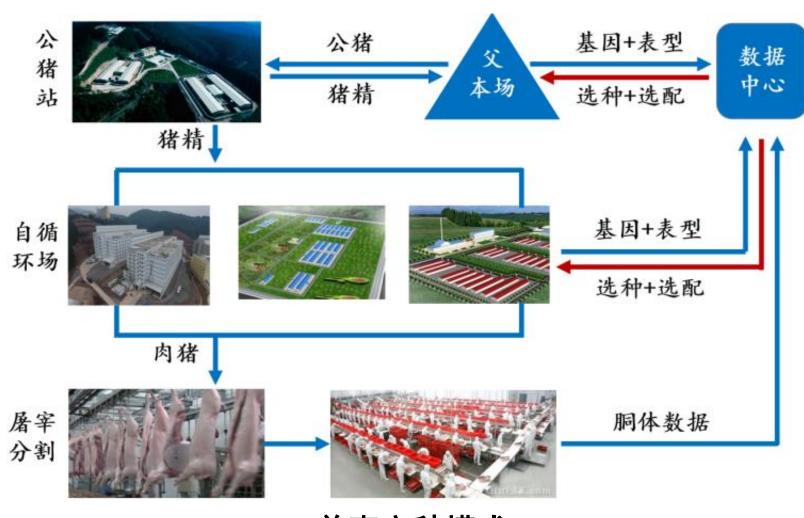
5、批次化生产与社会化供精结合提高利用效率

繁殖节律	精液利用间隔天数	公猪年采精利用次数	公猪产能利用率
连续生产	5	73	100.00%
一周生产制	7	52	71.23%
两周生产制	14	26	35.62%
三周生产制	21	17	23.29%
五周生产制	35	10	13.70%

三、普惠育种促进稳健经营

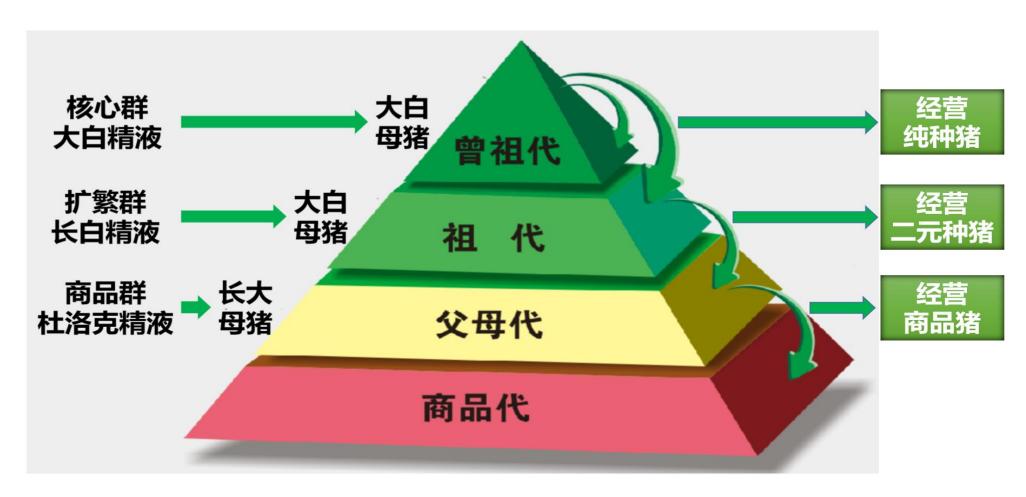
概念 做法 优势 案例

1、普惠育种模式概念解读

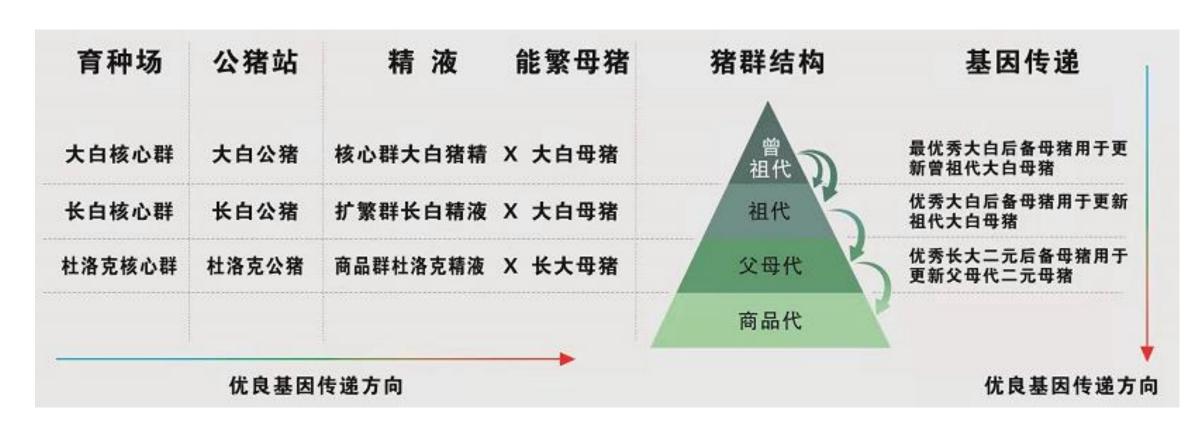

●普惠育种:

- ✓立足机会平等要求和商业可持续原则
- ✓以可负担的成本为有育种服务需求的各养猪主体
- ✓提供适当、有效的育种服务

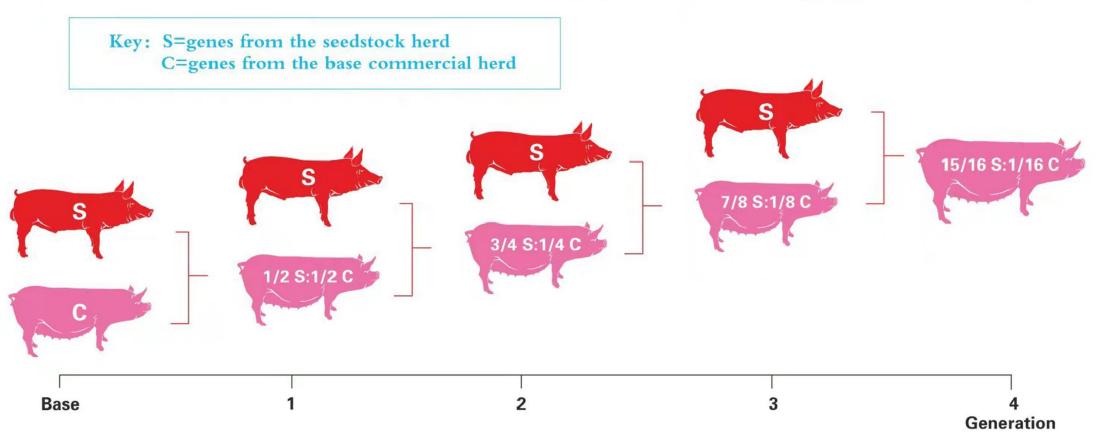
2、普惠育种模式做法



普惠育种模式

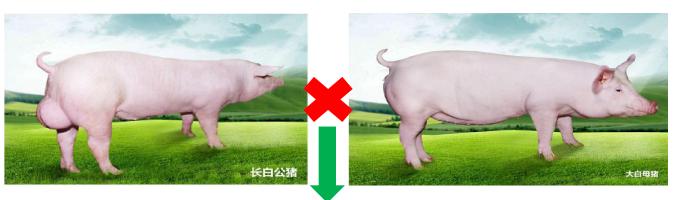


普惠育种模式下杜长大商品猪生产



普惠育种基因传递模式图

Influence of seedstock supplier in 4 generations



●终端父本性能水平是影响养猪成本的关键

杜洛克: 100%

长白猪: 100%

大白猪: 100%

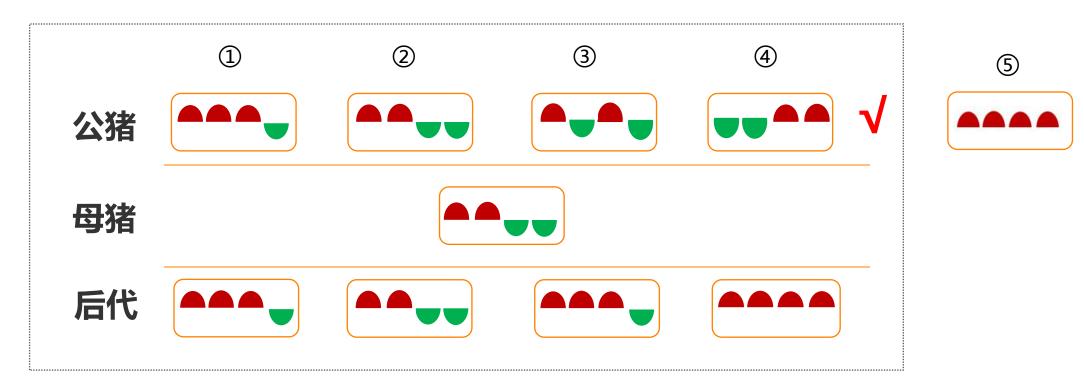
长白猪:大白猪=50%:50%

杜洛克:长白猪:大白猪=50%:25%:25%

普惠育种模式关键要素

●重要目的:各猪场能繁母猪全部实现场内(公司)自循环

●关键资源:大型高标准核心育种场和现代化种公猪站建设


●支撑技术:基因组选种和基因组选配联合应用

●模式目标:体系内所有母猪场能够实现联合育种

- 基因组选种:测定基因组序列,参考大数据,计算猪只遗传性能;
- 基因组选配:通过基因组匹配分析,筛选最佳的公母猪交配组合,使其后代基因效应值最大,生产性能最佳。

基因组精准选配:显著降低商品猪料肉比

Supplementary Table S6. Experimental validation of genomic mating.

	Trait ¹ 精准选配组 Experiment 1 随机配种组			精准选配组 Experiment 1 随机配种组 变化量			Experi	ment 2	
		Number	\sim GM ²	RM ³	Δ^4	Number	GM	RM	Δ
料肉比	FCR	293	2.6291	2.7376	-0.1085***	237	2.7977	2.8988	-0.1011**
日采食量(g)	ADFI	297	2,491.3870	2,538.0410	-46.6540*	238	2,553.6030	2,573.7550	-20.1520
30-120kg夭数	AGE	294	95.8754	98.4954	-2.6200*	239	99.9519	101.9743	-2.0224
日增重(g/d)	ADG	295	953.1242	930.5199	22.6043*	239	929.4134	904.4396	24.9738

¹ FCR, Feed Conversion Rate; ADFI, Average Daily Feed Intake; AGE, Days from 30 kg to 120 kg; ADG, Average Daily Gain.

The asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001) represented that the performance was significantly different between the genomic mating group and the random mating group.

料肉比降低	0.1085	0.1011
日采食量减少	46.654g、	20.152g
出栏天数少	2.6200天、	2.0224天
日增重增	22.6000g、	24.9738g

² GM represents the genomic mating group.

³ RM represents the random mating group.

 $^{^4\}Delta$ = the difference of mean phenotypic values between the random mating (RM) group and the genomic mating (GM) group, values with a superscript are significantly different at P < 0.05.

眼肌而和

华睡 厚

公猪数越多,精准选配效果越好

口业合品

Supplementary Table S9. The expected progeny values of six traits that resulted from different boar population size.

20-120レαモ粉

	merent sour popul	ation size.	日木食里	30-120kg大致	口增里	育 原序	11人间	代
公猪数量	Boar population size	FCR ¹ 料肉	比 ADFI¹	AGE ¹	ADG ¹	BFT ¹	EMA ¹	
	500	-0.1034 (0.0033)	-104.7422 (2.6520)	-4.3991 (0.1135)	45.5138 (1.1416)	-0.9698 (0.0228)	2.8627 (0.0631)	变化值 (实际值)
	1,000	-0.1147 (0.0031)	-114.3756 (2.6652)	-4.6696 (0.1109)	48.4395 (1.1149)	-1.0094 (0.0220)	3.0063 (0.0593)	
	1,500	-0.1271 (0.0034)	-138.2932 (3.1753)	-5.1770 (0.1052)	54.1673 (1.1018)	-1.1256 (0.0216)	3.3013 (0.0665)	
	2,000	-0.1399 (0.0036)	-147.9384 (3.3781)	-5.4174 (0.1034)	57.1436 (1.0541)	-1.1636 (0.0214)	3.3794 (0.0650)	
	2,500	-0.1415 (0.0036)	-151.8579 (3.2459)	-5.8215 (0.1013)	59.3717 (1.0281)	-1.1897 (0.0213)	3.4285 (0.0651)	
	3,000	-0.1439 (0.0035)	-156.0970 (3.3014)	-5.9248 (0.0994)	60.2514 (1.0018)	-1.2242 (0.0212)	3.5681 (0.0643)	

¹ FCR: Feed Conversion Rate; ADFI: Average Daily Feed Intake; AGE: Days from 30 kg to 120 kg; ADG: Average Daily Gain; BFT: Backfat Thickness; and EMA Eye Muscle Area.

3、普惠育种模式优势

普惠育种模式的优势

优势	描述
降低疾病传播风险	不用从外部引种,降低引种带来的疾病传播风险
遗传进展可持续	通过联合育种方式,不断把核心群优良基因通过精液传递到商品猪群,使得种猪群体较小的猪场遗传进展可持续
核心群维持成本低	只需要保留一个母系母本核心群,即可实现完善的良种繁育体系建设
降低人才和技术需求难度	通过秀博优秀基因技术服务体系赋能规模猪场建立完整的 良种繁育体系
提高固定资产利用率	通过种母猪自循环,加强后备种母猪供需协同,提高每批次种母猪的满产率,提高固定资产的利用率
降低配种成本	每袋猪精的平均价格=核心群大白精液价格×2%+扩繁群长白精液价格×10%+商品群杜洛克价格×88%

不同种母猪自循环生产模式的优缺点和适用条件

生产模式	优点	不足	适用条件
单生产线 自循环	1、场间转运少; 2、相同条件下生产,各猪群病原谱相对一致; 3、运营管理难度相对较低。	1、不同年龄阶段的猪群间疾病交叉传播风险增加; 2、猪群种类较多,精细化管理要求高。	1、猪场规模相对较小; 2、猪群健康度较高; 3、猪场数量有限。
多生产线间 自循环	1、场间转运少; 2、相同条件下生产,各猪群病原谱相对一致; 3、降低了后备母猪和经产母猪之间疾病交叉传播的风险; 4、运营管理难度相对较低。	1 人间生验阶段的海鞋间在海公》传播风险	1、猪场规模相对较大; 2、猪场具备划分为多条生产线的 条件; 3、猪场数量有限。
多猪场间自循环	1、减少了不同年龄段猪群间病原交叉传播的风险; 2、每个猪场功能单一,管理简单。	1、猪场数量相对较多,管理难度相对较大; 2、增加了猪群转运带来的疾病传播风险; 3、如果一个上游猪场出现疫情,影响下游猪 场较多。	1、猪场数量相对较多; 2、猪群规模较大; 3、各猪场能够根据生产工艺要 求,按功能进行系统匹配; 4、有专业的种猪安全转运能力; 5、企业运营管理能力相对较强。

4、普惠育种模式案例分享

✓ 规模:6700头

✓ 生产模式:周批次生产、公司+农户

✔ 栏舍:传统栏舍、平层结构、分三条线管理

✓ 与扬翔深度合作,由扬翔农牧提供种猪、秀博天梯山楼房公猪站提供猪精

科校改变养猪些!

扬翔將不忘初心, 砥砺前行, 为中国成为养猪强国竭尽所能!

THANKS 谢谢

服务热线:400-885-9552