

生猪种业创新与高质量发展

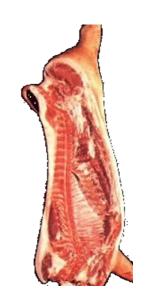
吉林大学 动物科学学院

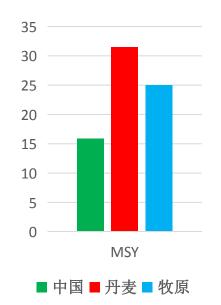
孙博兴 sbx@jlu.edu.cn

长春 2023.07.09

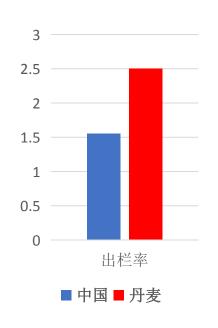
主要内容

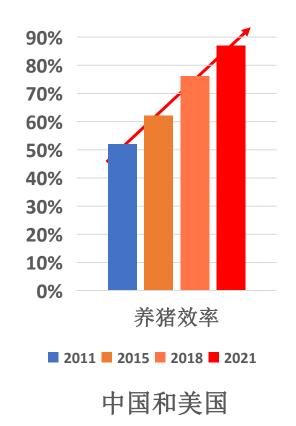
- 一、生猪产业和种业现状
- 二、目前面临的问题
- 三、生猪种业创新
- 四、高质量的发展



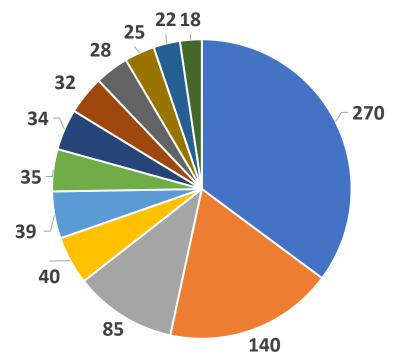


一、生猪产业与种业


 2022年,全国生猪出栏69995万头,猪肉产量5541万吨,生猪存栏45256 万头,能繁殖母猪存栏4390万头。


出栏重113.1Kg 胴体重79.2Kg

中国 MSY=15.9 丹麦 MSY=31.5 牧原 MSY=25


中国出栏率=1.55 丹麦出栏率=2.5

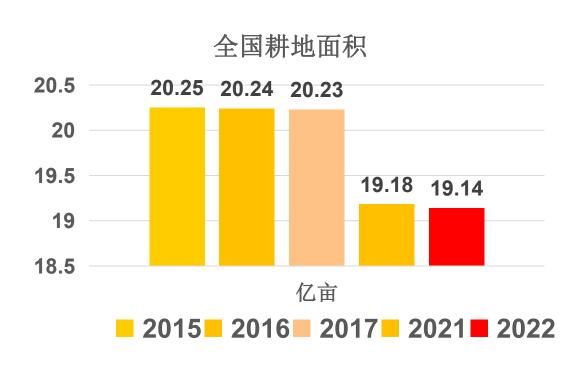
意林大学

头部企业迅猛发展,迭代加频

2022年头部企业能繁母猪数 (万头)

■牧原	■温氏	■ 新希望	■正大	■德康	■正邦
■傲农	■双胞胎	⋒■杨翔	■ 天邦	■中粮	■大北农

序号	公司简称	所属省份	2022年底能繁母 猪数量(万头)	上市情况
1	牧原股份	河南	270	√
2	温氏股份	广东	140	√
3	新希望	四川	85	√
4	正大 (中国)	北京	40	IPO
5	德康集团	四川	39	IPO
6	正邦科技	江西	35	√ V
7	傲农生物	福建	34	√
8	双胞胎集团	江西	32	-
9	扬翔股份	广西	28	IPO
10	天邦食品	浙江	25	√
11	中粮家佳康	湖北	22	_ √
12	大北农	北京	18	V
13	天康生物	新疆	15	√
14	海大集团	广东	15	√
15	桂垦牧业	广西	14	7 <u>4</u> 6
16	大象集团	山西	12	IPO
17	湖南佳和	湖南	12	50-
18	铁骑力士	四川	10.5	C37.
19	京基智农	广东	10.5	√
20	巨星农牧	四川	10.1	√
21	唐人神	湖南	10	√
22	力源集团	广西	10	
23	华统股份	浙江	10	√


宁波天邦股份有限公司 NINGBO TECH-BANK CO., LTD.

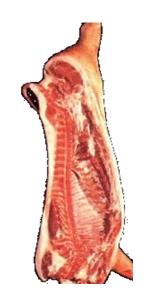
二、目前面临的问题

1.土地和饲料资源紧张。

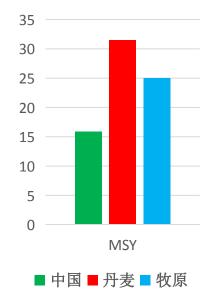
2022年末全国耕地面积19.14亿亩

2022年末全国人口14.12亿

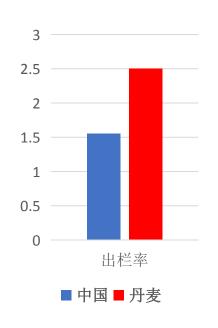
中国,以7%的土地,养活17.7%的人口,50%的猪,40%的鸡....

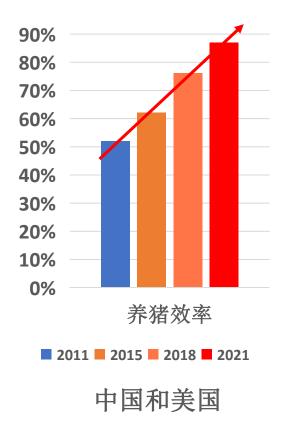


- 2. 我国畜牧业的进口依赖性和去卡脖子问题。
- 猪: 每年从国外进口1万头左右, 占全国种猪的万分之二, 占国家级核心育种场的5%:
- 鸡: 白羽肉鸡祖代从100%到99%进口(国内近期培育广明2号,圣泽901,沃德188), 蛋鸡祖代进口45%;
- 牛:全国荷斯坦种公牛80%进口胚胎或活体,西门塔尔牛进口70%,优质精液、胚胎全靠进口;
- 大豆: 进口占90%(1亿吨以上), 国产2000万吨左右;
- 玉米: 进口1130万吨。
- 同时缺乏动物蛋白和植物蛋白。



3.生产水平差距大。


 2022年,全国生猪出栏69995万头,猪肉产量5541万吨,生猪存栏45256 万头,能繁殖母猪存栏4390万头。


出栏重113.1Kg 胴体重79.2Kg

中国 MSY=15.9 丹麦 MSY=31.5 牧原 MSY=25

中国出栏率=1.55 丹麦出栏率=2.5

头部企业跟发达国家丹麦相比,每头猪成本比丹麦高600元。

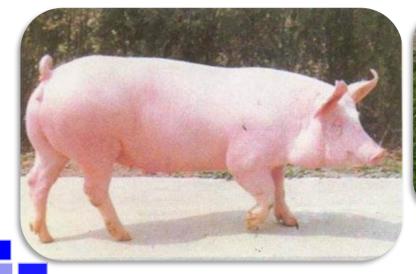
	丹麦	牧原	丹麦前25%	牧原超级成绩
出生活仔数	17.9	12.71	18.6	14.97
保育存活率	96.1	96	97.1	99.67
保育日增重g	463	418	501	602
保育料肉比	1.62	<mark>1.72</mark>	1.53	1.58
育肥成活率%	96.4	95.7	97.6	98.9
育肥日增重g	1032	<mark>819</mark>	1098	1098
上市日龄	169.5d 118.8Kg	192d 120Kg	161.7d 119.8Kg	174d 144Kg
育肥料肉比	2.58	<mark>2.89</mark>	2.46	2.32

注:数据来自2023年4月1日,郑州,秦英林董事长报告

4.生猪种业的问题和短板

- 瘦肉型种猪部分生产性能差距明显 差距:产仔数、料肉比
- 原创性技术研究落后,应用技术集成在加速
- 企业主动性不够,育种企业国际竞争力不成熟
- 区域发展不平衡

品种	胎次	总产仔数	数据来源
新加系大白猪	初产	15.74	
新加系长白猪	初产	15.28	肖非等 (2022)
东北民猪	初产	11.04	金鑫等 (2016)
梅山猪	初产	12.98	陈瑜哲等 (2020)
川乡黑猪	初产	9.51	杨雪梅等 (2022)
东辽黑猪	初产	10.3	孙浩等 (2022)
吉神黑猪	经产	10.79	白春艳等 (2019)


三、生猪种业创新的基础和条件

• 地方品种 83个

• 培育品种及配套系 38个

• 引入品种及配套系 6个

瘦肉型猪是我国生猪产业的主流品种。 长白、大白和杜洛克是国际通用品种。

地方品种和培育品种的市场份额小,但保护和开发利用也有重要意义。

三江白猪

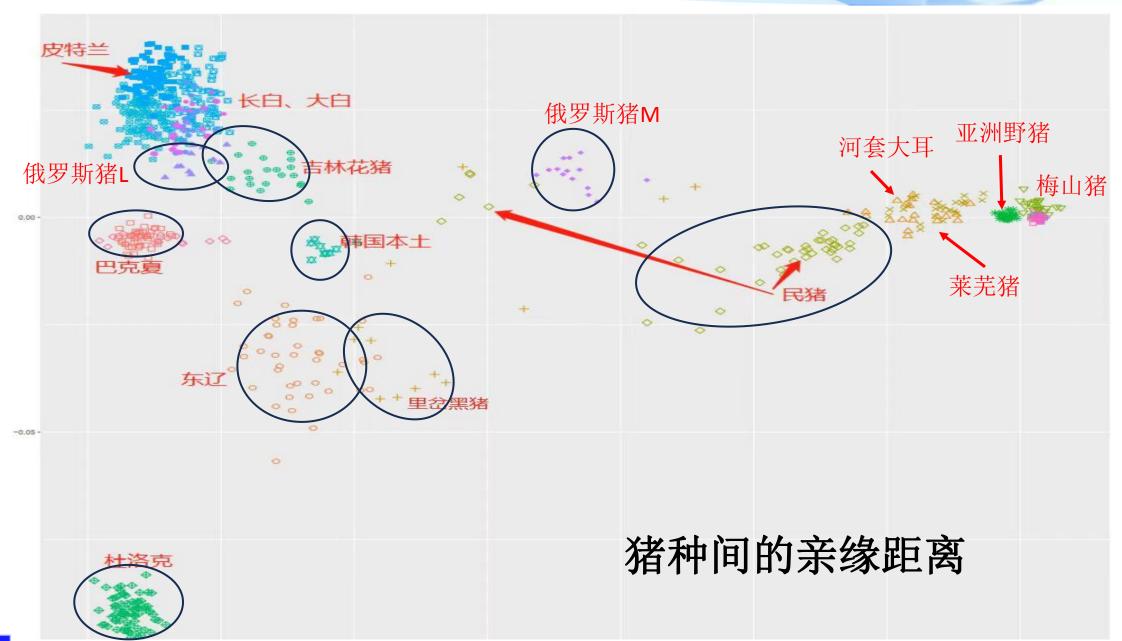
东北花猪

军牧1号

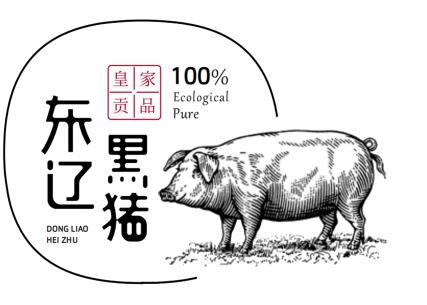
松辽黑猪

辽丹黑猪

吉神黑猪



东辽黑猪



举 明

★ 历史脉络 ★

肌内脂肪含量 4.6% 必须氨基酸 40.3% 鲜味氨基酸 35.7%

> 猪领鲜 猪锦记

2023 母猪6000头

吉林双天 2020 中国地理标 生态农业

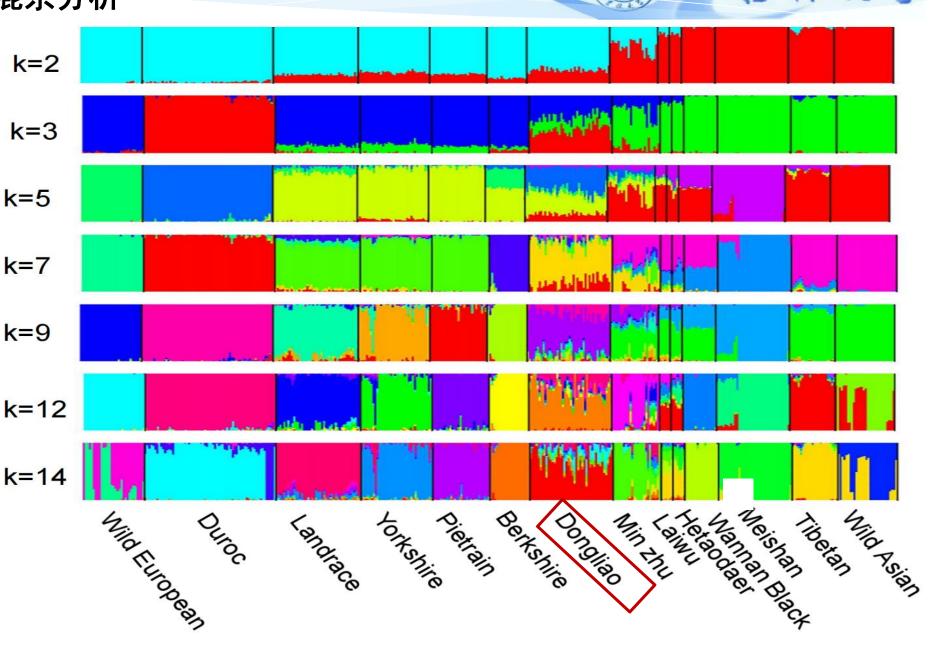
2021

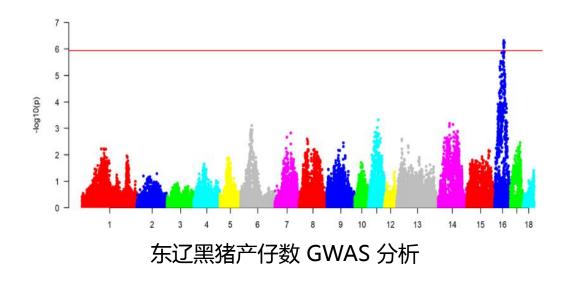
省审 志保护产品 东辽黑猪 2004 2015

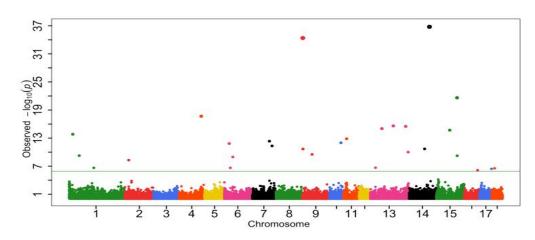
吉大&天圣 合 作 2019

提名 巴×民 礼让黑猪 1958~1975 1976 1988 野猪 东北民猪 2001 保种繁育场 1653 国营猪场解散 热闹乡礼让村 盛京围场

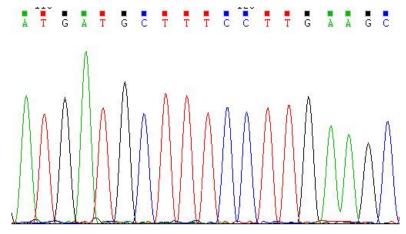
14个种群的血统混杂分析

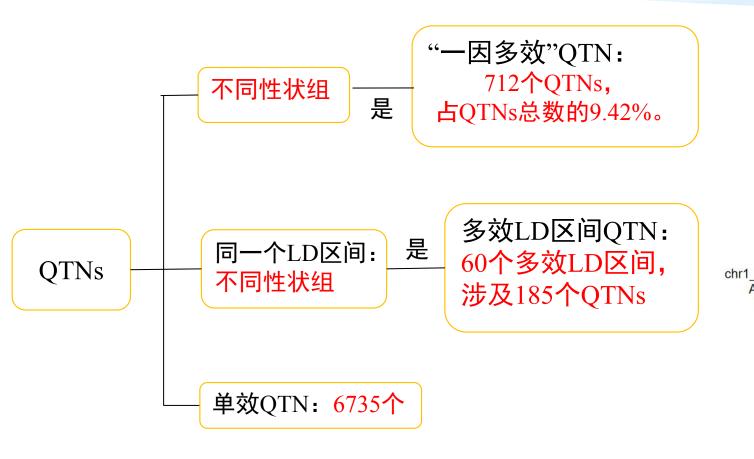



根据SNP基因型数据推断最可能的 祖先种群数(K),结果显示: K=7~14时,东辽黑猪都能作为独 立的遗传群体存在,同时各猪种间 都有少量的血统交叉;

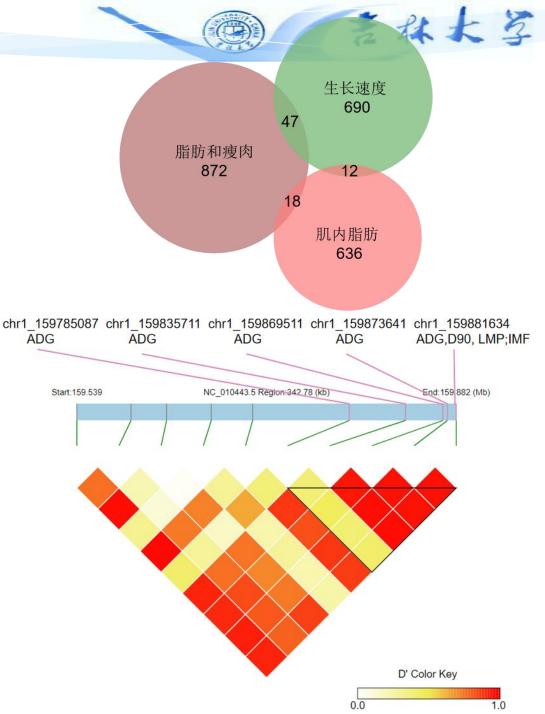

K=2~7时,东辽黑猪和东北民猪都有相近的血统组成;

K=5时,东辽黑猪具有东北民猪、 杜洛克猪和巴克夏猪三个品种的遗 传成分;


K=2时,中西方猪种明显区分,同时存在血统交叉。



东辽黑猪乳头数GWAS结果


东辽黑猪肋骨数基因分型和测定工作

通过东辽黑猪核心群805头芯片测序,初步挖掘影响东辽黑猪产仔数、 乳头数、肋骨数等性状的候选基因。

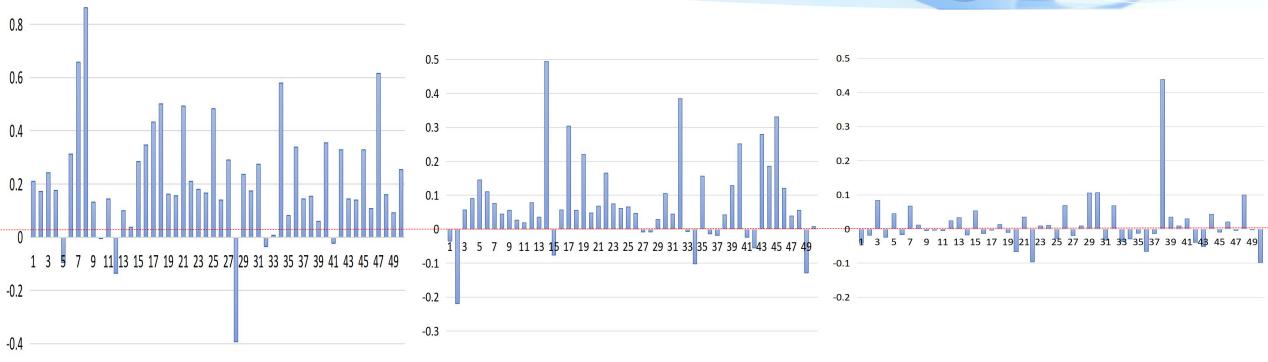
猪QTL数据库中生长和肉质相关性状的分析,得到823个多效QTNs,6735个单效QTNs。

说明同时选择生长和肉质性状在理论上是可行的。破除传统误解。

在吉神黑猪群体中验证高度遗传分化的QTNs

位点	$F_{ m ST}$ 值	基因	频率	有利等	相关性状	对应的基因	变异类型	
正 点	I'ST LEL	引进	中国	位基因	4日人11年代	71四山圣囚	文开天生	
SSC3	0.803	A=0.91	A=0.16	G	pH 值&	MYLPF	启动子区	
-g.17942328 A>G	0.003	G=0.09	G=0.84)	滴水损失	WIILI I	<i>114</i> 11	
SSC8	0.907	A=0.97	A=0.06	A	平均背膘厚	LOC110262188	lncRNA	
-g.123285711 A>G	0.507	G=0.03	G=0.94	71	1 550 13 1400/1	(lncRNA)		
SSC11	0.871	C=0.93	C=0.09	T	肌内脂肪	-	基因间区	
-g.47893517 C>T	0.071	<i>T</i> =0.07	T=0.91)	77 17 17 17 17 17 17 17 17 17 17 17 17 1		金色的色	
SSC3	0.764	C=0.80	C=0.03	T	肌内脂肪	RANBP2	错义突变	
-g.47557567 C>T	0.704	<i>T</i> =0.20	T=0.97)	(1) (1) (1)	IUII VDI 2	归入八 文	
SSC14	0.850	G=0.88	G=0.06	A	滴水损失	SLC15A4	错义突变	
-g.26131023 G>A	0.050	A=0.12 $A=0.94$		71	1101/1/1/2//	SECISIT	иЛЛХ	

单效QTNs在中西方猪种群体间 F_{ST} 统计



																				l	
类别	生长					胴体						肉质						总计			
性状	生长速度	饲料 转化	体尺	体型	总计	分割 部位	胴体 长度 和重 量	脂肪 和瘦 肉	屠宰率	背最 长肌		总计	pH值	肉色		肌间 脂肪	嫩度	系水 力	脂肪酸	总计	
QTNs 数目	467	399	509	170	1545	200	52	548	161	220	132	1313	148	104	418	45	32	60	1245	2052	5035
F _{ST} 均值	0.29	0.28	0.33	0.23	0.29	0.37	0.34	0.34	0.32	0.34	0.33	0.34	0.25	0.3	0.27	0.36	0.24	0.25	0.27	0.27	0.3
F _{ST} 值 达 0.25 的占 比	0.5	0.49	0.55	0.42	0.51	0.62	0.65	0.52	0.5	0.6	0.61	0.56	0.45	0.54	0.47	0.53	0.44	0.4	0.47	0.47	0.51

胴体类QTNs分化程度最高,生长类次之,肉质类分化程度最低。

说明西方猪种提高肉质性状是可行的,中国地方猪种提高生长性能也是可行的。

预测最后一根肋骨处背膘厚育种值的 准确度平均提高了0.2%(*P*≤0.001) 预测<mark>肌内脂肪含量</mark>育种值的准确度 平均提高了0.08%($P \le 0.001$)

预测平均日增重育种值的准确度 平均提高了0.01% (P>0.05)

把中西方猪种间的QTNs遗传分化程度 F_{ST} 作为先验信息,加权到GBLUP中,在365头苏姜猪、482头 苏淮猪中进行验证,能够显著提高生长和肉质性状的基因组育种值估计准确性。

生猪种业

培育有市场竞争力猪种

■ 高效瘦肉型猪 重视高产仔数、料肉比、生长速度等指标。

■ 优质瘦肉型猪 兼顾生产效率和肉质,用杂交选育品种或专门化选育品系。

■ 高端肉质猪 以追求肉质为主的地方猪、土杂猪、黑猪、花猪等。

生猪种业创新的条件

• 饲养环境标准化

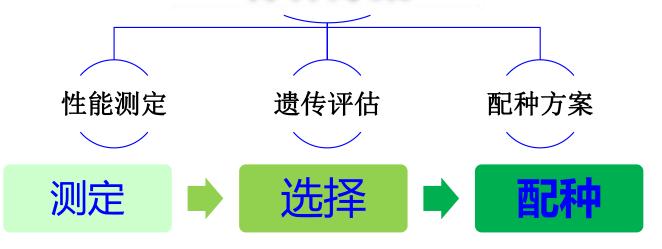
环境控制、营养标准、废物资源化处理等。

• 经营管理正规化

批次化管理、目标管理、品牌树立等。

• 品种资源规模化

小规模保种、大规模育种。

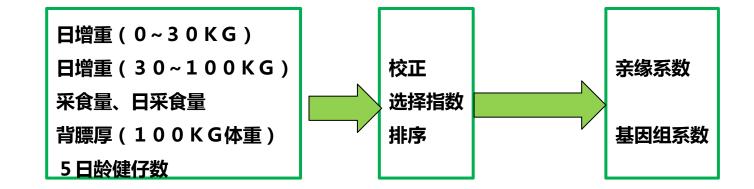
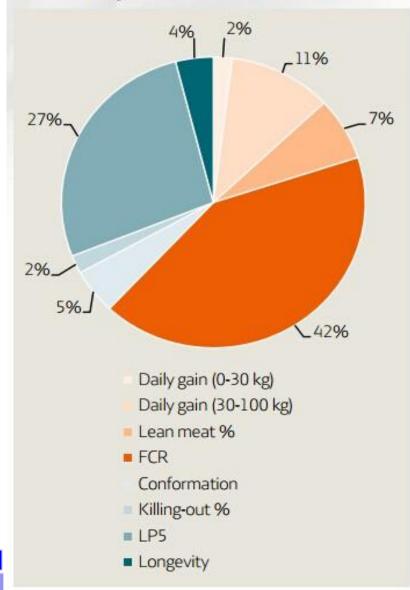

• 繁育体系科学化

核心群、繁殖群、商品群等。

• 育种技术现代化

智能表型测定、全基因组选择等。

育种方案

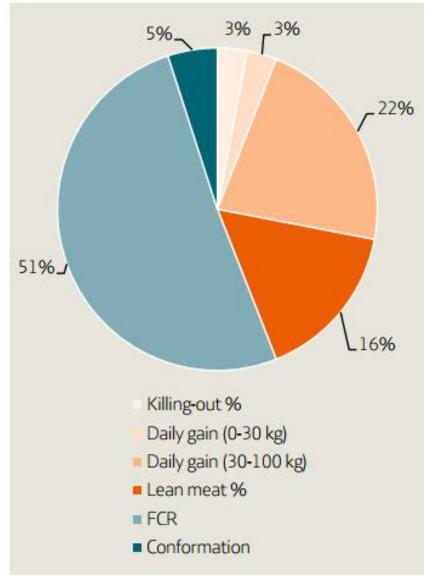


Figure 2 - Breeding objective for DanAvl Landrace and Large White – economic contribution.

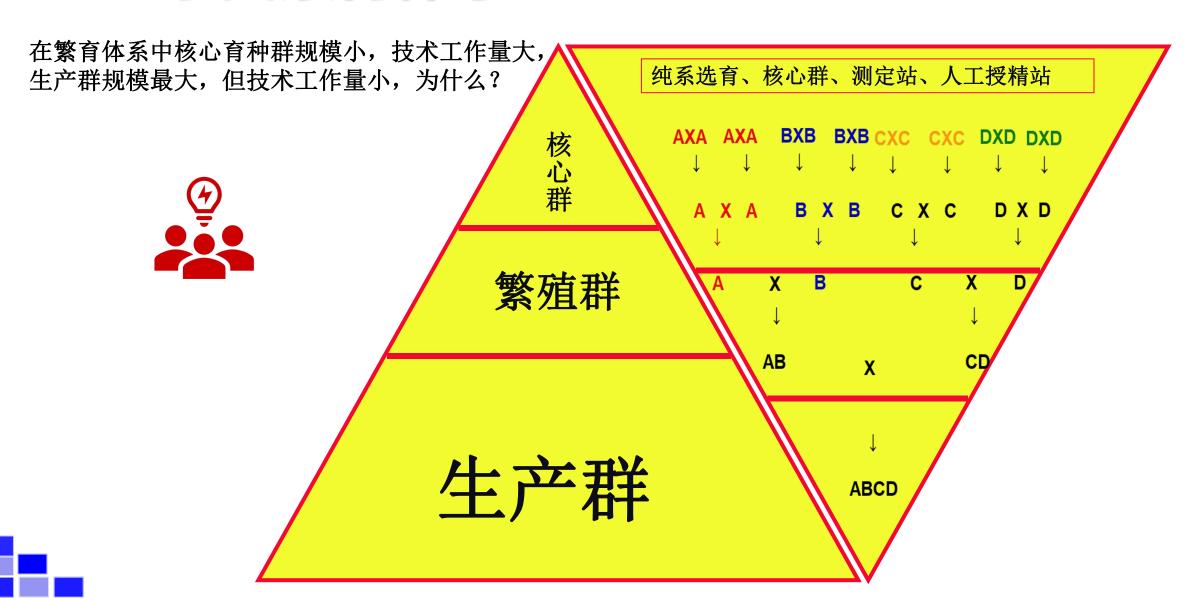
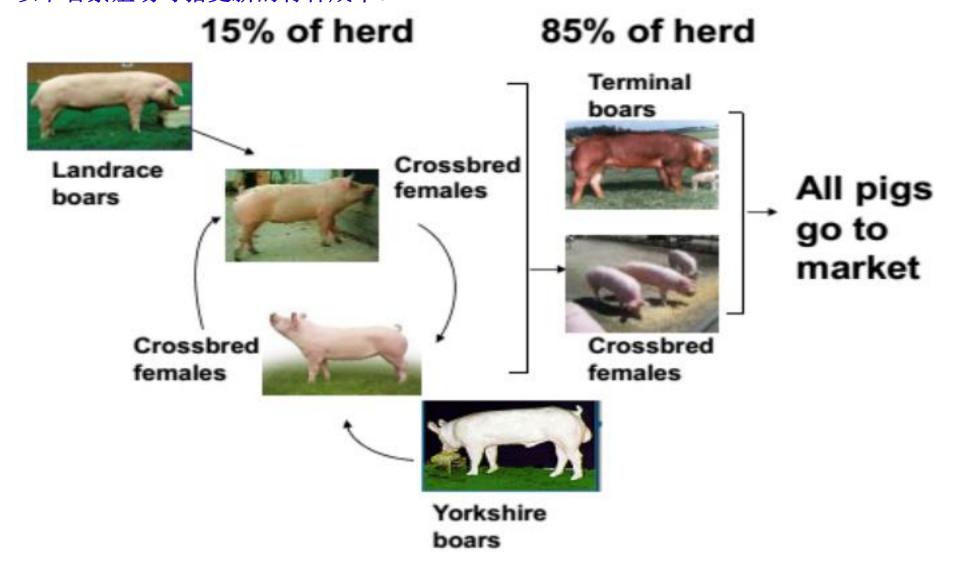


Figure 3 - Breeding objective for DanAvl Duroc – economic contribution.



杂交繁育体系

利用循环杂交生产模式(Rotaterminal Crossbreeding System)自行培育后备长大二元母猪,以节省繁殖场母猪更新的育种成本。

四、生猪种业高质量发展的展望

- 猪种选育
- 生物饲料
- 疫病防控
- 控污降碳
- 猪舍设计
- 环境控制
- 产业链嵌合
- 金融创新

敬请批评指正!

谢 谢!

吉林大学动物科学学院孙博兴sbx@jlu.edu.cn长春2023.07.09

